
Package: MsIO (via r-universe)
September 5, 2024

Title Serializing and restoring/importing mass spectrometry data
objects

Version 0.0.4

Description The serialization mechanism of R allows to save and load R
data objects in a binary format, that can however not be read
by other programming languages or software. The MsIO package
supports serializing and restoring or importing mass
spectrometry data objects to and from language agnostic file
formats. A variety of different file types, including HDF5 and
JSON-based formats defined by the Bioconductor *alabaster*
package are supported. The file type can be defined and
configured through a second argument `param` of the
export/import methods.

Depends R (>= 4.2.0)

Imports jsonlite, methods, MsCoreUtils (>= 1.17.1), S4Vectors,
ProtGenerics, alabaster.base

Suggests BiocStyle (>= 2.5.19), faahKO, knitr (>= 1.1.0),
MsExperiment, msdata, rmarkdown, roxygen2, Spectra (>= 1.15.6),
testthat, xcms, alabaster.se, alabaster.matrix

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/MsIO/issues

URL https://github.com/RforMassSpectrometry/MsIO

biocViews Infrastructure, MassSpectrometry, Metabolomics, DataImport,
Proteomics

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.2

Collate 'PlainTextParam.R' 'AlabasterParam.R' 'AllGenerics.R'
'MetaboLightsParam.R' 'MsBackend.R' 'MsBackendMzR.R'
'MsExperiment.R' 'MsExperimentFiles.R' 'Spectra.R'
'mzTabParam.R' 'XcmsExperiment.R' 'zzz.R'

1

https://github.com/RforMassSpectrometry/MsIO/issues
https://github.com/RforMassSpectrometry/MsIO

2 AlabasterParam

Repository https://rformassspectrometry.r-universe.dev

RemoteUrl https://github.com/rformassspectrometry/MsIO

RemoteRef HEAD

RemoteSha 1bddd738788bb84baee927d123b41cffe6b825da

Contents

AlabasterParam . 2
MetaboLightsParam . 8
mzTabParam . 9
PlainTextParam . 11
saveMsObject . 15

Index 17

AlabasterParam Store MS data objects using the alabaster framework

Description

The alabaster framework provides the methodology to save R objects to on-disk representations/
storage modes which are programming language independent (in contrast to e.g. R’s RDS files).
By using standard file formats such as JSON and HDF5, alabaster ensures that the data can also be
read and imported by other programming languages such as Python or Javascript. This improves
interoperability between application ecosystems.

The alabaster package defines the saveObject() and readObject() methods. Implementations
of these methods are available for the following classes hence allowing to use saveObject() and
readObject() directly on these objects:

• MsBackendMzR, defined in the Spectra package.

• Spectra, defined in the Spectra package.

In addition, the MsIO package defines the AlabasterParam which can be used to write or read MS
objects using the saveMsObject() and readMsObject() methods. This allows additional configu-
rations and customizations to the export or import process. It is thus for example possible to specify
the path to the original MS data files for on-disk MS representations such as the MsBackendMzR
which enables to import a stored object even if either the object or the original MS data files have
been moved to a different directory or file system.

Importantly, it is only possible to save one object in one directory. To overwrite an existing stored
object in a folder, that folder has to be deleted beforehand.

Details and properties for the alabaster-based storage modes for the various supported MS data
objects are listed in the following sections.

https://github.com/ArtifactDB/alabaster.base
https://bioconductor.org/packages/Spectra
https://bioconductor.org/packages/Spectra

AlabasterParam 3

Usage

AlabasterParam(path = tempdir())

S4 method for signature 'MsBackendMzR'
saveObject(x, path, ...)

S4 method for signature 'MsBackendMzR,AlabasterParam'
saveMsObject(object, param)

S4 method for signature 'MsBackendMzR,AlabasterParam'
readMsObject(object, param, spectraPath = character())

S4 method for signature 'MsExperiment'
saveObject(x, path, ...)

S4 method for signature 'MsExperiment,AlabasterParam'
saveMsObject(object, param)

S4 method for signature 'MsExperiment,AlabasterParam'
readMsObject(object, param, ...)

S4 method for signature 'Spectra'
saveObject(x, path, ...)

S4 method for signature 'Spectra,AlabasterParam'
saveMsObject(object, param)

S4 method for signature 'Spectra,AlabasterParam'
readMsObject(object, param, ...)

S4 method for signature 'XcmsExperiment'
saveObject(x, path, ...)

S4 method for signature 'XcmsExperiment,AlabasterParam'
saveMsObject(object, param)

S4 method for signature 'XcmsExperiment,AlabasterParam'
readMsObject(object, param, ...)

Arguments

path character(1) with the name of the directory where the MS data object should
be saved to or from which it should be restored. Importantly, path should point
to a new folder, i.e. a directory that does not already exist.

x MS data object to export. Can be one of the supported classes listed below.

... optional additional parameters passed to the downstream functions, such as for
example spectraPath described above.

4 AlabasterParam

object for saveMsObject(): the MS data object to save, for readMsObject(): the MS
data object that should be returned

param an object defining and (eventually configuring) the file format and file name or
directory to/from which the data object should be exported/imported.

spectraPath For readMsObject(): character(1) optionally allowing to define the (abso-
lute) path where the spectra files (data storage files) can be found. This parame-
ter is used for MsBackendMzR (see descriptions below) and can be passed through
... also to readMsObject() functions for other classes (such as Spectra, MsExperiment
etc).

Value

For AlabasterParam(): an instance of AlabasterParam class. For readObject() the exported
object in the specified path (depending on the type of object defined in the OBJECT file in the path.
For readMsObject() the exported data object, defined with the function’s first parameter, from the
specified path. saveObject() and saveMsObject() don’t return anything.

On-disk storage for MsBackendMzR objects

MsBackendMzR objects can be exported or imported using the saveMsObject() or readMsObject()
functions to and from alabaster-based storage modes using the AlabasterParam parameter ob-
ject. Alternatively alabaster’s saveObject() and readObject() can be used. The parameter
spectraPath allows to define an alternative path to the original data files (in case these were
moved). This parameter can be passed as additional parameter to both the readObject() as well
as the readMsObject() methods.

The format of the folder contents follows the alabaster format: a file OBJECT (in JSON format)
defines the type of object that was stored in the directory while the object’s data, for MsBackendMzR,
is stored in sub-folders peaks_variables (a character with the names of the peaks variables of the
object) and spectra_data (the metadata for all spectra). Each sub-folder contains also an OBJECT
file defining the object’s type and an additional file (in HDF5 format) containing the data. See
examples below for details.

On-disk storage for Spectra objects

Spectra objects can be exported/imported using saveMsObject() and readMsObject() with an
AlabasterParam, or using the saveObject() and readObject() functions. Both read functions
allow to pass additional parameters (such as spectraPath) to the import function for the Spectra’s
backend.

The content of the folder with the stored Spectra data contains the OBJECT file defining the type
of the object stored in that directory and the spectra_processing_queue.json file that contains the
processing queue of the Spectra objects. All other slots of the object are saved in alabaster format
into their respective sub-directories: backend for the MsBackend (see also MsBackendMzR above),
metadata for the metadata slot, processing for the processing log, processing_chunk_size with the
size for chunk-wise processing and processing_queue_variables for spectra/peaks variables that are
needed for the processing queue.

AlabasterParam 5

On-disk storage for MsExperiment objects

MsExperiment is a container for various (different) MS data objects related to the same experiment.
It is a very flexible object that can, but does not must contain actual MS data in form of e.g. a
Spectra object. For the alabaster-based disk storage of an MsExperiment, each of the object’s slots
gets exported separately into its own subfolder within the object’s directory (defined with param-
eter path). For the export of the individual slots, the respective saveObject() method is used.
Similar to all other objects listed here, MsExperiment can be stored using either saveObject()
or saveMsObject (with AlabasterParam) and restored using readObject() or readMsObject()
(with MsExperiment() passed as the first parameter and AlabasterParam as second). The read
functions support passing additional parameters to the import function(s) for object’s MS data ob-
ject(s), such as the spectraPath parameter described above through

The content of the folder with the stored MsExperiment data contains a file OBJECT (in JSON
format, with the type of class defined as "ms_experiment") and subfolders for the various slots,
each saved to disk using the data type-specific saveObject() function:

• @sampleData: DataFrame stored into a folder named sample_data.
• @sampleDataLinks: the List is stored into a folder named sample_data_links, its metadata

columns DataFrame (i.e. mcols() of the List) into a folder named sample_data_links_mcols.
• @spectra: if not NULL, a Spectraobject stored into a folder with the name *spectra* (usingsaveObject()ofSpectraobjects described above). This requires the *alabaster.se* package to be installed. If the value of the@spectraslot isNULL‘

no directory spectra is created.
• @experimentFiles: MsExperimentFiles object saved using saveObject() into a folder

named experiment_files. MsExperimentFiles are saved as a named list of character strings.
• @qdata: if not NULL, the object in this slot (either a QFeatures or SummarizedExperiment)

is stored into a folder with the name qdata using the saveObject() method of the respective
object. If the value for the @qdata slot is NULL the folder qdata is not created. At present,
export of QFeatures objects is not supported!

• @otherData: List data is saved into a folder named other_data.
• @metadata: List data is saved into a filder named metadata.

Note that the data type of the assays of imported (previously stored) SummarizedExperiment
objects are of type ReloadedMatrix.

On-disk storage for XcmsExperiment objects

XcmsExperiment objects extend the MsExperiment object and contain in addition the results of a
preprocessing of the MS data using the xcms package. These objects can be exported/imported in the
formats used for alabaster-based storage using the saveObject() and readObject() functions as
well as using saveMsObject() and readMsObject() with an AlabasterParam parameter object.
As with all other methods, additional parameters can be passed with the ... parameter (such as
the spectraData parameter for import of a MsBackendMzR discussed above). The storage directory
contains all files and folders created by the export of the MsExperiment (see above) and in addition
the specific results of xcms from the respective slots of the object:

• @chromPeaks: this numeric matrix is stored in a folder names chrom_peaks.
• @chromPeakData: this data.frame is first converted to a DataFrame and then stored to a

folder chrom_peak_data (in the alabaster format for DataFrame).
• @featureDefinitions: this data.frame is first converted to a DataFrame and then stored to

a folder feature_definitions (also in alabaster format for DataFrame).

6 AlabasterParam

• @processHistory: the list of ProcessHistory objects is stored in JSON format to a file
xcms_experiment_process_history.json.

Author(s)

Johannes Rainer, Philippine Louail

See Also

Other MS object export and import formats.: PlainTextParam, mzTabParam

Examples

########
Export and import a `MsBackendMzR` object:
####

library(Spectra)
library(msdata)
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata")
be <- backendInitialize(MsBackendMzR(), fl)
be

Export the object to a temporary directory using the alabaster framework;
the equivalent command using the parameter object would be
`saveMsObject(be, AlabasterParam(d))`.
d <- file.path(tempdir(), "ms_backend_mzr_example")
saveObject(be, d)

List the content of the folder
dir(d, recursive = TRUE)

The data can be imported again using alabaster's readObject() function
be_in <- readObject(d)
be_in

Alternatively, the data could be restored also using
be_in <- readMsObject(MsBackendMzR(), AlabasterParam(d))

all.equal(mz(be), mz(be_in))

########
Export and import of `Spectra` objects:
####

Create a `Spectra` object with a `MsBackendMzR` backend.
s <- Spectra(fl)

Define the folder to which to export and export the object
d <- file.path(tempdir(), "spectra_example")
saveMsObject(s, AlabasterParam(d))

AlabasterParam 7

List the content of the directory
dir(d, recursive = TRUE)

Restore the `Spectra` object again
s_in <- readMsObject(Spectra(), AlabasterParam(d))
s_in

Alternatively, it would also be possible to just import the
`MsBackendMzR` of the `Spectra`:
be_in <- readMsObject(MsBackendMzR(), AlabasterParam(file.path(d, "backend")))
be_in

########
Export and import of `MsExperiment` objects:
####

library(MsExperiment)

Create a new `MsExperiment` with sample data and our previously defined
`Spectra` as its MS data
m <- MsExperiment(

sampleData = data.frame(name = c("a", "b"), index = 1:2),
spectra = s)

m

d <- file.path(tempdir(), "ms_experiment_example")
saveObject(m, d)

List directory content
dir(d)

Restore the stored object
m_in <- readObject(d)

m_in

########
Export and import of `XcmsExperiment` objects:
####

`XcmsExperiment` objects extend `MsExperiment` to represent all
data of an MS experiment and contain in addition the results
of the preprocessing of the data with the *xcms* package. Below
we load the *xcms* package and load an example result object from that
package.
library(xcms)
x <- loadXcmsData()
x

Store this result object to a folder

8 MetaboLightsParam

d <- file.path(tempdir(), "xcms_experiment_example")
saveMsObject(x, AlabasterParam(d))

dir(d)

Restore the data; eventually needed additional parameters, such as
`spectraPath` to restore a `MsBackendMzR` if the original data files
have been moved, could be passed with the `...` parameter of
`readMsExperiment()`.
x_in <- readMsObject(XcmsExperiment(), AlabasterParam(d))
x_in

MetaboLightsParam Load content from a MetaboLights study

Description

The MetaboLightsParam class and the associated readMsObject() method allow users to load an
MsExperiment object from a study in the MetaboLights database (https://www.ebi.ac.uk/metabolights/index)
by providing its unique study studyId. This function is particularly useful for importing metabolomics
data into an MsExperiment object for further analysis within the R environment. It’s important to
note that this method can only be used for import into an R environement using readMsObject().
It cannot be used with the saveMsObject() method.

If the study contains multiple assays, the user will be prompted to select which assay to load.
The resulting MsExperiment object will include a sampleData slot populated with data extracted
from the selected assay. Columns in the sampleData that contain only NA values are automatically
removed, and an additional column is added to track the injection index.

Usage

MetaboLightsParam(studyId = character(1))

S4 method for signature 'MsExperiment,MetaboLightsParam'
readMsObject(object, param, ...)

Arguments

studyId character(1) The MetaboLights study studyId, which should start with "MTBL".
This identifier uniquely specifies the study within the MetaboLights database.

object for saveMsObject(): the MS data object to save, for readMsObject(): the MS
data object that should be returned

param an object defining and (eventually configuring) the file format and file name or
directory to/from which the data object should be exported/imported.

... additional optional arguments. See documentation of respective method for
more information.

mzTabParam 9

Value

(for now ?) A MsExperiment object with only the sampleData slots filled (will be updated when
MetaboLightsBackend available ?).

Author(s)

Philippine Louail

See Also

• MsExperiment object, defined in the (MsExperiment) package.

• MetaboLights for accessing the MetaboLights database.

Examples

library(MsExperiment)
Load a study with the studyId "MTBLS10035"
param <- MetaboLightsParam(studyId = "MTBLS10035")
ms_experiment <- readMsObject(MsExperiment(), param)

mzTabParam Store xcms preprocessing results to a file in mzTab-M format.

Description

The saveMsObject() and readMsObject() methods with the mzTabParam option enable users
to save/load XcmsExperiment objects in Mz-Tab-m file format. Mainly the metadata (MTD) and
Small molecule feature (SMF) tables will represent the XcmsExperiment. More specifically, sampleData()
of the object will be stored in the metadata section (MTD) along with the user-inputed studyId and
polarity. The featureDefinitions() will be stored in the small molecule feature (SMF) sec-
tion but by default only the mzmed, rtmed, rtmin and rtmax are exported. More info avaialble in
featureDefinitions() can be exported by specifying the optionalFeatureColumns parameter.
The featureValues() will also be stored in the small molecule feature (SMF) section.

The small molecule summary section (SML) will be filled with null values as no annotation and
identification of compound is performed in xcms.

Writing data to a folder that contains already exported data will result in an error.

Usage

mzTabParam(
studyId = character(),
polarity = c("positive", "negative"),
sampleDataColumn = character(),
path = tempdir(),
optionalFeatureColumns = character(),

https://bioconductor.org/packages/MsExperiment
https://www.ebi.ac.uk/metabolights/index

10 mzTabParam

...
)

S4 method for signature 'XcmsExperiment,mzTabParam'
saveMsObject(object, param)

Arguments

studyId character(1) Will be both the filename of the object saved in mzTab-M for-
mat and the mzTab-ID in the file.

polarity character(1) Describes the polarity of the experiment. Two inputs are possi-
ble, "positive" (default) or "negative".

sampleDataColumn

character strings corresponding to the column name(s) of the sampleData()
of the XcmsExperiment object with the different variables of the experiment,
for example it could be "phenotype", "sample_type", etc...

path character(1) Define where the file is going to be stored. The default will be
tempdir().

optionalFeatureColumns

Optional columns from featureDefinitions() that should be exported too.
For example it could be "ms_level", "npeaks", etc...

... additional optional arguments. See documentation of respective method for
more information.

object for saveMsObject(): the MS data object to save, for readMsObject(): the MS
data object that should be returned

param an object defining and (eventually configuring) the file format and file name or
directory to/from which the data object should be exported/imported.

Slots

dots Correspond to any optional parameters to be passed to the featureValues() function. (e.g.
parameters method or value).

Note

This function was build so that the output fit the recommendation of mzTab-M file format version
2.0. These can be found here: (http://hupo-psi.github.io/mzTab/2_0-metabolomics-release/mzTab_format_specification_2_0-
M_release.html)

Author(s)

Philippine Louail, Johannes Rainer

References

Hoffmann N, Rein J, Sachsenberg T, Hartler J, Haug K, Mayer G, Alka O, Dayalan S, Pearce
JTM, Rocca-Serra P, Qi D, Eisenacher M, Perez-Riverol Y, Vizcaino JA, Salek RM, Neumann
S, Jones AR. mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry

PlainTextParam 11

Metabolomics. Anal Chem. 2019 Mar 5;91(5):3302-3310. doi: 10.1021/acs.analchem.8b04310.
Epub 2019 Feb 13. PMID: 30688441; PMCID: PMC6660005.

See Also

Other MS object export and import formats.: AlabasterParam, PlainTextParam

Examples

Load a test data set with detected peaks, of class `XcmsExperiment`
library(xcms)
test_xcms <- loadXcmsData()

Define param
param <- mzTabParam(studyId = "test",

polarity = "positive",
sampleDataColumn = "sample_type")

Save as a mzTab-M file
saveMsObject(test_xcms, param)

PlainTextParam Store contents of MS objects as plain text files

Description

The saveMsObject() and readMsObject() methods with the PlainTextParam option enable users
to save/load different type of mass spectrometry (MS) object as a collections of plain text files
in/from a specified folder. This folder, defined with the path parameter, will be created by the
storeResults() function. Writing data to a folder that contains already exported data will result
in an error.

All data is exported to plain text files, where possible as tabulator delimited text files. Data is
exported using R’s write.table() function, thus, the text files will also contain row names (first
column) as well as column names (header). Strings in the text files are quoted. Some information,
in particular the content of parameter classes within the objects, is stored in JSON format instead.

The MS object currently supported for import and export with this parameter are:

• MsBackendMzR object, defined in the (Spectra) package.

• Spectra object, defined in the (Spectra) package.

• MsExperiment object, defined in the (MsExperiment) package.

• XcmsExperiment object, defined in the (xcms) package.

See their respective section below for details and formats of the exported files.

https://bioconductor.org/packages/Spectra
https://bioconductor.org/packages/Spectra
https://bioconductor.org/packages/MsExperiment
https://bioconductor.org/packages/xcms

12 PlainTextParam

Usage

PlainTextParam(path = tempdir())

S4 method for signature 'MsBackendMzR,PlainTextParam'
saveMsObject(object, param)

S4 method for signature 'MsBackendMzR,PlainTextParam'
readMsObject(object, param, spectraPath = character())

S4 method for signature 'MsExperiment,PlainTextParam'
saveMsObject(object, param)

S4 method for signature 'MsExperiment,PlainTextParam'
readMsObject(object, param, ...)

S4 method for signature 'Spectra,PlainTextParam'
saveMsObject(object, param)

S4 method for signature 'Spectra,PlainTextParam'
readMsObject(object, param, ...)

S4 method for signature 'XcmsExperiment,PlainTextParam'
saveMsObject(object, param)

S4 method for signature 'XcmsExperiment,PlainTextParam'
readMsObject(object, param, ...)

Arguments

path For PlainTextParam(): character(1), defining where the files are going to
be stored/ should be loaded from. The default is path = tempdir().

object for saveMsObject(): the MS data object to save, for readMsObject(): the MS
data object that should be returned

param an object defining and (eventually configuring) the file format and file name or
directory to/from which the data object should be exported/imported.

spectraPath For readMsObject(): character(1) optionally allowing to define the (abso-
lute) path where the spectra files (data storage files) can be found. This parame-
ter is used for MsBackendMzR (see descriptions below) and can be passed through
... also to readMsObject() functions for other classes (such as Spectra, MsExperiment
etc).

... Additional parameters passed down to internal functions. E.g. parameter spectraPath
(see above).

Value

For PlainTextParam(): a PlainTextParam class. saveMsObject() does not return anything but
saves the object to collections of different plain text files to a folder. The readMsObject() method
returns the restored data as an instance of the class specified with parameter object.

PlainTextParam 13

On-disk storage for MsBackendMzR objects

For MsBackendMzR objects, defined in the Spectra package, the following file is stored:

• The backend’s spectraData() is stored in a tabular format in a text file named ms_backend_data.txt.
Each row of this tab-delimited text file corresponds to a spectrum with its respective metadata
in the columns.

On-disk storage for Spectra objects

For Spectra objects, defined in the Spectra package, the files listed below are stored. Any parame-
ter passed to the saveMsObject() method using its ... parameter are passed to the saveMsObject()
call of the Spectra’s backend.

• The processingQueueVariables, processing, processingChunkSize(), and backend class
information of the object are stored in a text file named spectra_slots.txt. Each of these slots
is stored such that the name of the slot is written, followed by "=" and the content of the slot.

• The processing queue of the Spectra object, ensuring that any spectra data modifications are
retained, is stored in a json file named spectra_processing_queue.json. The file is written
such that each processing step is separated by a line and includes all information about the
parameters and functions used for the step.

• The Spectra’s MS data (i.e. it’s backend) is stored/exported using the saveMsObject()
method of the respective backend type. Currently only backends for which the saveMsObject()
method is implemented (see above) are supported.

On-disk storage for MsExperiment objects

For MsExperiment objects, defined in the MsExperiment package, the exported data and related
text files are listed below. Any parameter passed to the saveMsObject() through ... are passed to
the saveMsObject() calls of the individual MS data object(s) within the MsExperiment.

Note that at present saveMsObject() with PlainTextParam does not export the full content of the
MsExperiment, i.e. slots @experimentFiles, @qdata, @otherData and @metadata are currently
not saved.

• The sampleData() is stored as a text file named ms_experiment_sample_data.txt. Each row
of this file corresponds to a sample with its respective metadata in the columns.

• The links between the sample data and any other data within the MsExperiment are stored in
text files named ms_experiment_sample_data_links_....txt, with "..." referring to the data slot
to which samples are linked. Each file contains the mapping between the sample data and
the elements in a specific data slot (e.g., Spectra). The files are tabulator delimited text files
with two columns of integer values, the first representing the index of a sample in the objects
sampleData(), the second the index of the assigned element in the respective object slot. The
table "ms_experiment_element_metadata.txt" contains the metadata of each of the available
mappings.

• If the MsExperiment contains a Spectra object with MS data, it’s content is exported to the
same folder using a saveMsObject() call on it (see above for details of exporting Spectra
objects to text files).

14 PlainTextParam

On-disk storage for XcmsExperiment objects

For XcmsExperiment objects, defined in the xcms package, the exported data and related text files
are listed below. Any parameter passed to the saveMsObject() through ... are passed to the
saveMsObject() calls of the individual MS data object(s) within the XcmsExperiment.

• The chromatographic peak information obtained with chromPeaks() and chromPeaksData()
is stored in tabular format in the text files xcms_experiment_chrom_peaks.txt and xcms_experiment_chrom_peak_data.txt,
respectively. The first file’s rows represent single peaks with their respective metadata in the
columns (only numeric information). The second file contains arbitrary additional informa-
tion/metadata for each peak (each row being one chrom peak).

• The featureDefinitions() are stored in a text file named xcms_experiment_feature_definitions.txt.
Additionally, a second file named ms_experiment_feature_peak_index.txt is generated to con-
nect the features with the corresponding chromatographic peaks. Each row of the first file
corresponds to a feature with its respective metadata in the columns. The second file contains
the mapping between features and chromatographic peaks (one peak ID per row).

• The processHistory() information of the object is stored to a file named xcms_experiment_process_history.json
in JSON format.

• The XcmsExperiment directly extends the MsExperiment class, thus, any MS data is saved
using a call to the saveMsObject of the MsExperiment (see above for more information).

Author(s)

Philippine Louail

See Also

Other MS object export and import formats.: AlabasterParam, mzTabParam

Examples

Export and import a `Spectra` object:

library(Spectra)
library(msdata)
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata")
sps <- Spectra(fl)

Export the object to a temporary directory
d <- file.path(tempdir(), "spectra_example")
saveMsObject(sps, PlainTextParam(d))

List the exported plain text files:
dir(d)

- ms_backend_data.txt contains the metadata for the MS backend used (a
'MsBackendMzR`.
- spectra_slots.txt contains general information from the Spectra object.

Import the data again. By using `Spectra()` as first parameter we ensure
the result is returned as a `Spectra` object.

saveMsObject 15

sps_in <- readMsObject(Spectra(), PlainTextParam(d))
sps_in

Check that the data is the same
all.equal(rtime(sps), rtime(sps_in))
all.equal(intensity(sps), intensity(sps_in))

The data got exported *by module*, thus we could also load only a part of
the exported data, such as just the `MsBackend` used by the `Spectra`:
be <- readMsObject(MsBackendMzR(), PlainTextParam(d))
be

The export functionality also ensures that the data/object can be
completely restored, i.e., for `Spectra` objects also their
processing queue is preserved/stored. To show this we below first
filter the spectra object by retention time and m/z:

sps_filt <- sps |>
filterRt(c(400, 600)) |>
filterMzRange(c(200, 300))

The filtered object has less spectra
length(sps_filt)
length(sps)
And also less mass peaks per spectrum
lengths(sps_filt[1:3])
lengths(sps[1:3])

d <- file.path(tempdir(), "spectra_example2")
saveMsObject(sps_filt, PlainTextParam(d))

The directory contains now an additional file with the processing
queue of the `Spectra`.
dir(d)

Restoring the object again.
sps_in <- readMsObject(Spectra(), PlainTextParam(d))

Both objects have the same processing history
sps_filt
sps_in

Same number of spectra
length(sps_filt)
length(sps_in)

Same number of mass peaks (after filtering)
lengths(sps_filt[1:3])
lengths(sps_in[1:3])

saveMsObject Save and load MS data objects to and from different file formats

16 saveMsObject

Description

The saveMsObject() and readMsObject() methods allow serializing and restoring/importing mass
spectrometry (MS) data objects to and from language agnostic file formats. The type and configu-
ration of the file format is defined by the second argument to the method, param.

• saveMsObject(object, param): saves the MS data object object to file(s) in a format de-
fined by param.

• readMsObject(object, param): object defines the type of MS object that should be re-
turned by the function and param the format and file name(s) from which the data should be
restored/imported.

Usage

saveMsObject(object, param, ...)

readMsObject(object, param, ...)

Arguments

object for saveMsObject(): the MS data object to save, for readMsObject(): the MS
data object that should be returned

param an object defining and (eventually configuring) the file format and file name or
directory to/from which the data object should be exported/imported.

... additional optional arguments. See documentation of respective method for
more information.

Value

saveMsObject() has no return value, readMsObject is expected to return an instance of the class
defined with object.

Author(s)

Philippine Louail, Johannes Rainer, Laurent Gatto

Index

∗ MS object export and import formats.
AlabasterParam, 2
mzTabParam, 9
PlainTextParam, 11

∗ MS object export and import formats
MetaboLightsParam, 8

AlabasterParam, 2, 11, 14

MetaboLightsParam, 8
mzTabParam, 6, 9, 14

PlainTextParam, 6, 11, 11

readMsObject (saveMsObject), 15
readMsObject,MsBackend,ANY-method

(saveMsObject), 15
readMsObject,MsBackendMzR,AlabasterParam-method

(AlabasterParam), 2
readMsObject,MsBackendMzR,PlainTextParam-method

(PlainTextParam), 11
readMsObject,MsExperiment,AlabasterParam-method

(AlabasterParam), 2
readMsObject,MsExperiment,MetaboLightsParam-method

(MetaboLightsParam), 8
readMsObject,MsExperiment,PlainTextParam-method

(PlainTextParam), 11
readMsObject,Spectra,AlabasterParam-method

(AlabasterParam), 2
readMsObject,Spectra,PlainTextParam-method

(PlainTextParam), 11
readMsObject,XcmsExperiment,AlabasterParam-method

(AlabasterParam), 2
readMsObject,XcmsExperiment,PlainTextParam-method

(PlainTextParam), 11
readObject (AlabasterParam), 2
readObject(), 2

saveMsObject, 15
saveMsObject,MsBackend,ANY-method

(saveMsObject), 15

saveMsObject,MsBackendMzR,AlabasterParam-method
(AlabasterParam), 2

saveMsObject,MsBackendMzR,PlainTextParam-method
(PlainTextParam), 11

saveMsObject,MsExperiment,AlabasterParam-method
(AlabasterParam), 2

saveMsObject,MsExperiment,PlainTextParam-method
(PlainTextParam), 11

saveMsObject,Spectra,AlabasterParam-method
(AlabasterParam), 2

saveMsObject,Spectra,PlainTextParam-method
(PlainTextParam), 11

saveMsObject,XcmsExperiment,AlabasterParam-method
(AlabasterParam), 2

saveMsObject,XcmsExperiment,mzTabParam-method
(mzTabParam), 9

saveMsObject,XcmsExperiment,PlainTextParam-method
(PlainTextParam), 11

saveObject(), 2
saveObject,MsBackendMzR-method

(AlabasterParam), 2
saveObject,MsExperiment-method

(AlabasterParam), 2
saveObject,MsExperimentFiles-method

(AlabasterParam), 2
saveObject,Spectra-method

(AlabasterParam), 2
saveObject,XcmsExperiment-method

(AlabasterParam), 2

write.table(), 11

17

	AlabasterParam
	MetaboLightsParam
	mzTabParam
	PlainTextParam
	saveMsObject
	Index

